The active record

design pattern

Chris Mitchell
Email: chrism@lclark.edu

But then comes the database...

con = sqlite3.connect(oradebook.db’)
cursor = con.execute("StLECT & FROM student™)

for row 1n cursor:
print “{0: {1:".format(row['], row[/])

con = sglite3.connect(gradebook.db’)
cursor = con.execute("'SELECT & FROM student™)
for row 1in cursor:

print “{0: {1:".format(row['], row[/])

students = Students.all()
for student in students:
print student.full name()

The active record pattern
at work.

Fun with objects!

students = Students.all()
for student 1n students:
print student.full name()

Active record...

e iS a design pattern

e wraps access to table rows
e instances represent rows

e adds business logic

For your reference:

students = Students.all()
for student 1n students:
print student.full name()

Ways It can be used:

e Student.all()

e Student.get(3)

e student.pk

e student.first name = "Reginald"
e student.save()

e student.full name()

e student.get grades()

e grade.get assignment()

How It can be implemented.

e One class per table

e Hand-coded parameterized SQL

e Class methods for retrieving/creating new rows
e [nstance methods for business logic

e Strike a balance between simplicity and DRY

Active record iIs not a hammer
AKA not everything is a nall.

e AR encourages coupling
e Some queries not easily expressible

But active record is still great for:

e CRUD — Create Update Delete
e That one guy on your team who still doesn’t know SQL.

In short, active record can help you
make database access more
congruent with object orientation.

http://www.Iclark.edu/~chrism/talks/active-record/
has a working example.

| am: Chris Mitchell
My email address is: chrism@lclark.edu

http://www.lclark.edu/%7Echrism/talks/active-record/

