
Using the N-Body Problem to Engage Undergraduates in Parallel
Programming

Ben White, Miriam Robinson, Chris Mitchell, Jens Mache
Department of Mathematical Sciences, Lewis & Clark College, Portland, Oregon, USA

{benwhite, miriamr, chrism, jmache}@lclark.edu

Abstract— With the rise of multicore hardware, it is in-
creasingly apparent that parallel programming is overdue
for integration into undergraduate curricula. While some
institutions are trying this, their assignments are often not
interesting or not engaging, and the difficulty of low-level
parallel languages might be overlooked. We have created
a fun and compelling problem for students to parallelize:
an N -body simulation. Although our example is under de-
velopment, we suggest that more undergraduate institutions
implement similar examples in the classroom.

Keywords: parallel computing, n-body simulation, computer sci-
ence education

1. Introduction
Parallel programming is often given cursory treatment

in current undergraduate curricula, even though it is now
necessary for any computer scientist who wishes to write
programs that properly utilize multicore machines. The sub-
ject of parallel programming has been traditionally reserved
for students pursuing graduate-level studies, but the rising
importance of parallelism brings the need to introduce par-
allel concepts earlier on in computer science education. We
aim to do this by creating exercises and materials that are
targeted for undergraduate students.

Background research on recent efforts for bringing paral-
lelism to the undergraduate classroom revealed two trends.
First, assigned programming exercises were not very com-
pelling. Often, these assignments included overused prob-
lems like matrix multiplication which are unlikely to catch
student’s interests and do not encourage experimentation. A
student is likely to just “try to get the assignment done”
if they do not care about it. Second, we noticed that many
introductions to parallel programming involved lower-level
abstractions like POSIX threads (Pthreads) [1] or Message
Passing Interface (MPI) [2], which may obfuscate the higher-
level parallelism concepts with a swath of low-level details.
Students’ fundamental understanding of parallelism may
suffer as a result of being overwhelmed by these details.

This paper describes an exercise in which students use
OpenMP to parallelize a graphical implementation of the
N -body problem written in C. The N -body problem is an
O(N2) algorithm for computing the motion of N bodies
under the influence of physical forces. In addition to being

visually interesting program, the naive algorithm for com-
puting the forces is easy to understand and computationally
expensive, making it a good fit for teaching parallel concepts
to undergraduates. OpenMP [3] is an industry standard API
for shared-memory parallel programming that is high-level
and easy to grasp. Adding OpenMP directives to one’s code
causes the compiler to emit programs that will make use of
threads to complete their work.

2. Related Work
One college or university that has already introduced

parallel programming to undergraduates is the University of
San Francisco, which has a lower-division elective course
in the subject [4]. Students are taught the C programming
language during the first month of the course, and then
are taught parallel programming using MPI, Pthreads, and
OpenMP. The course also uses an N -body simulation, but
devotes a large amount of time to replacing the naive O(N2)
implementation with a faster O(N logN) implementation
that uses the Barnes-Hut algorithm [5]. Using Barnes-Hut
is a valuable lesson in algorithm optimization, but not
particularly useful for teaching parallel concepts to students.

At the University of Washington, a three-week introduc-
tion to parallelism and concurrency is taught in a sophomore
level data structures course [6]. The students in this course
learn about parallelism with Java’s built-in Thread library.
Since these threads have a large amount of overhead, they
are ill-suited for small computations and do not offer much
speedup for the types of programs that students are likely
to write. Even though C and C++ offer fast threading that
may provide students with a more satisfying speedup, at
the University of Washington, students are already familiar
with Java, so teaching the course in Java enables more
time to be spent teaching parallelism concepts instead of
a programming language.

A breadth-first course in parallel programming for un-
dergraduates was introduced at Sonoma State University
using three high-level languages: OpenMP, Intel Threading
Building Blocks (TBB) [7], and CUDA [8], [9]. The labs
and assignments used in this course were standard problems
such as finding a maximum value in an array or incrementing
all the elements of an array. While these are simple and easy
to understand problems, they may be better suited for during
a lecture instead of as a homework assignment.

At Lewis & Clark College, Mitchell et al. created a lab
exercise for introducing the CUDA parallel programming
language [10]. The exercise asks students to use CUDA to
parallelize an animated implementation of John Conway’s
Game of Life. The problem was chosen for its strength
in providing visual feedback and for its more recreational
feel when compared to typical numerical problems. Because
CUDA requires an NVIDIA graphics processing unit (GPU)
to run, it may be impractical to teach this type of parallelism
in an undergraduate environment that is not equipped with
NVIDIA GPUs.

This paper builds on these works by combining two
qualities that seem to be useful for teaching this subject:
interesting and engaging examples, and languages that have
high-level and easy to learn abstractions for parallelism.

3. The N -body Problem
The N -body problem simulates the movement of a col-

lection of N bodies under the influence of physical forces.
In our case, we simulate gravity in two dimensions. Each
body in the system moves according to the net force exerted
on it by the other N − 1 bodies, yielding a computational
complexity of O(N2). Our serial approach to the n-body
problem uses numerical integration to estimate the posi-
tions of the bodies at regular time steps throughout the
simulation. To turn the n-body problem into an assignment,
after learning some OpenMP, students may be given our
serial implementation and challenged to parallelize it with
OpenMP directives to make it run as fast as possible. At a
very high level, our serial implementation works like this:

1 For each step:
2 draw the bodies
3 move the bodies one time step

Updating the position of the bodies for each time step
involves using the positions and masses of the bodies to
calculate the gravitational forces they exert on each other,
and then using these net forces and body positions and
body velocities to update the bodies with new positions and
velocities. Pseudocode for progressing the simulation one
time step looks like:

4 For each body q:
5 Initialize net force on q to zero
6 For every body k besides q:
7 Calculate the force k exerts

on q
8 Add this force to the net

force on q
9 For each body q:
10 Update q‘s position and velocity

Note the doubly-nested loop that calculates the net forces
in the system and gives the algorithm an O(N2) runtime.

The gravitational force exerted on a body q by another body
k is given by:

Fqk =
Gmqmk

rqk
(1)

where G is the gravitational constant, mq and mk are
the masses of bodies q and k, respectively, and rqk is the
distance between the two bodies.

4. N-Body as an Assignment
We propose providing finished serial code and challenging

the students to add OpenMP directives to gain the best
speedup they can. Providing a serial implementation allows
students to focus on the parallel task at hand and not having
to worry about implementing the physics. Instructors could
also challenge students to produce the fastest version in the
class.

There are a number of ways a student might approach
parallelizing the code.

The most obvious section to parallelize is the nested loop
which computes the forces on each particle. This is done by
adding a compiler directive for OpenMP in front of the loop
on line 4 (missing proper private/shared clauses):

pragma omp parallel for
num_threads(n)

Here n is an integer indicating the number of threads in
the thread pool. Using the num_threads clause allows the
user to vary the number of threads to test the performance
of the program.

The exercise affords a little bit of experimentation because
there are a few ways to do this parallelism incorrectly and
also correctly. For a complete serial implementation and for
more information on parallelizing this code, please refer to
our website [11].

5. Discussion
5.1 Potential Difficulties

Despite the apparent simplicity of inserting OpenMP
directives to add parallelism, a careless approach will cause
the student to make correctness errors. These mistakes will
encourage them to reason about race conditions and variable
scope (private/shared) to understand why their program has
failed and to determine what works and what doesn’t.

The first potential problem is that of shared and private
variables. For example, a naive approach to the exercise
is to simply insert a parallel for directive before the
outer loop. However, since OpenMP automatically treats
any variables declared outside of an OpenMP directive as
shared, those variables will be visible and accessible by all
threads. This can lead to race conditions between iterations
of the loop and cause incorrect answers. A simple fix is
to declare all critical variables as private. For example, if

we have a variable x used inside the for loop, but it was
declared outside the loop, we can make it private by adding
the private clause:

pragma omp parallel for private(x)

Another way to avoid this type of race condition is to
implicitly set variables as private for OpenMP by placing
their declaration inside the for loop.

A second problem students may come across is the issue
of handling output. Since I/O is not inherently thread-
safe, different threads attempting to print simultaneously
can cause unexpected output. For example, two threads
participating in a parallel loop with each thread trying to
print Answer from Thread N\n might produce this
jumble:

> Answer fromAnswer from Thread 2
> Thread 1
>

In order to avoid this, students should ensure the
print commands are serialized by placing them in code
blocks with the # pragma omp critical directive.
The critical directive ensures only one thread is ex-
ecuting the code in the block at any time, preventing
simultaneous printing to the screen.

5.2 Expected Performance
We timed the N-Body program on an 8-core Sun server

(with 64 hardware threads) with varying numbers of threads,
1000 bodies, and with termination occurring after 100
frames. The data we gathered should serve as a guide for
the kind of performance increase students can expect to
see. Table 1 shows the speedup of the parallelized force
calculation using the OpenMP parallel for pragma.
Speedup was defined as

S =
T1

Tp
, (2)

where T1 is the execution time of the sequential program
(one thread) and Tp is the execution time of the parallel
program. The number of threads was controlled by varying
the num_threads clause, and the runtimes were gathered
by using the UNIX time command. The loops equivalent
to those in the pseudocode on lines 4 and 9 were parallelized
with a parallel for pragma.

6. Conclusion
While we have not classroom-tested this assignment yet,

we anticipate that this example will be engaging and useful
for students not interested in typical problems such as matrix
multiplication. In addition to being a fun example, it is also
useful in situations where students have diverse backgrounds
and interests that may not include the usual computational
mathematics problems. The usefulness of this paper should

Table 1: Speedup of the parallelized force calculation using
the OpenMP parallel for pragma.

Number of Threads Speedup
2 2.00
4 3.99
8 7.93

16 14.24
32 21.80
64 26.72

not be limited to implementing just the N -body problem
either; we hope that other instructors will create their own
interactive and interesting examples for their students.

7. Acknowledgements
Partial support for this work was provided by the National

Science Foundation’s “Transforming Undergraduate Educa-
tion in Science, Technology, Engineering and Mathematics
(TUES)” program under Award No. 1044932, by the John S.
Rogers Science Research Program and by the James F. and
Marion L. Miller Foundation. We would also like to thank
Quentin Froemke and Jingke Li.

References
[1] B. Barney. (2012) POSIX Threads Programming. [Online]. Available:

https://computing.llnl.gov/tutorials/pthreads/
[2] (2012) The Message Passing Interface (MPI) standard. [Online].

Available: http://www.mcs.anl.gov/research/projects/mpi/
[3] L. Dagum and R. Menon, “OpenMP: an industry standard API for

shared-memory programming,” Computational Science Engineering,
IEEE, vol. 5, no. 1, pp. 46 –55, 1998.

[4] P. Pacheco. (2012) Computer Science 202, Introduction to Parallel
Computing. [Online]. Available: http://cs.usfca.edu/∼peter/cs220/

[5] J. Barnes and P. Hut, “A heirarchical O(NlogN) force-calculation
algorithm,” Nature, vol. 324, no. 6096, pp. 446–449, 1986.

[6] D. Grossman. (2012) Sophomoric Paral-
lelism and Concurrency. [Online]. Available:
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/

[7] (2012) Intel Threading Building Blocks (TBB). [Online]. Available:
http://threadingbuildingblocks.org

[8] (2012) CUDA Zone. [Online]. Available:
http://developer.NVIDIA.com/category/zone/cuda-zone

[9] S. Rivoire, “A breadth-first course in multicore and manycore pro-
gramming,” in Proceedings of the 41st ACM technical symposium on
Computer science education, ser. SIGCSE ’10. New York, NY, USA:
ACM, 2010, pp. 214–218.

[10] C. T. Mitchell, J. Mache, and K. L. Karavanic, “Learning CUDA:
lab exercises and experiences, part 2,” in Proceedings of the ACM
international conference companion on Object oriented programming
systems languages and applications companion, ser. SPLASH ’11.
New York, NY, USA: ACM, 2011, pp. 201–202.

[11] J. Mache. (2012) Teaching parallel computing with higher-level
languages and activity-based laboratories. [Online]. Available:
http://lclark.edu/ jmache/parallel

