
Parallelizing Tompa’s Exact Algorithm for Finding Short Motifs in
DNA

Christopher T. Mitchell1, Jonathan Grochowski1, Julian H. Dale1, Nicolas B. Wilson1, and Jens Mache1
1Department of Mathematics & Computer Science, Lewis & Clark College, Portland, Oregon, USA

Abstract— Motif finding, the search for regulatory se-
quences in DNA, is a computationally expensive challenge
in bioinformatics. This paper presents a pleasantly parallel
version of Tompa’s exact method for finding short motifs. We
use a distributed-memory computer cluster and MPI to run
our parallel algorithm and collect data. We vary motif length
and allowed substitions. Results indicate good speedup and
scalability.

Keywords: cluster, parallel algorithm, bioinformatics, motif find-
ing, performance evaluation, MPI

1. Introduction

A motif is a short sequence of DNA that has a specific
function and appears multiple times throughout a genome. A
motif could be many things, including a transcription factor
binding site, or a ribosome binding site. Motifs are of interest
to biologists because they often play important roles in the
regulation of gene expression.

Finding a motif amongst a set of DNA sequences is not
a trivial task. The motif may not appear in every single
sequence, and instances of the motif may not be identical due
to substitutions, insertions, and deletions. To find this motif,
one not only needs to accommodate for inexact matches, but
one must also devise a way to filter the true biological motifs
from patterns that randomly occur within the sequences.

Our initial survey of DNA motif finding algorithms
showed that the set of approaches to this problem is very
diverse. Within this set, there are two general approaches
to the problem [1]. The first approach uses a word-based
algorithm that analyzes a string of nucleotides and counts
and compares the frequency of specific k-mers (contiguous
substrings of length k). Word-based algorithms rely on
exhaustive enumeration and can guarantee an optimal result.
The second approach involves using probabilistic models
where the parameters are based on some form of statistical
inference (maximum-likelihood, Bayesian) or weight matrix.

This paper will focus on an exhaustive word-based al-
gorithm designed by Tompa [2]. Our goal was to decrease
the run-time of this algorithm by parallelizing its execution.
This paper will present our method of parallelization, per-
formance results, and suggestions for continued work.

2. Parallelizing Tompa’s algorithm
2.1 Tompa’s word-based algorithm

Tompa developed a word-based algorithm that takes a
set of DNA sequences and a k-mer length as its input,
and outputs z-scores for all motifs (words) of length k.
The algorithm was designed to overcome two weaknesses
that he identified in more naive word-based motif finding
approaches [2]. These naive algorithms (that simply count
k-mer frequency or measure k-mer entropy) are vulnerable
to improperly scoring motifs when either the background
nucleotide distribution is not uniform or when pairs of motifs
occur in largely different number of input sequences.

Tompa’s approach was to score each k-mer with a z-score
constructed from the observed and expected number of input
sequences that have an occurrence of the given k-mer. The
z-score for some k-mer s is given by

Ms =
Ns −Nps
Nps(1− ps)

, (1)

where N is the number of input sequences, Ns is the number
of input sequences that contain an occurrence of s, and
ps is the probability of observing an occurrence of some
s in a random sequence. The idea of the z-score and the
technique for calculating ps was the crux of Tompa’s work,
but not necessarily the most computationally expensive.
It is worthwhile to impress that calculating Ns involves
examining every input sequence in turn with respect to k-
mer s.

2.2 Identifying opportunities for parallelization
To help us determine which portions of the algorithm

would benefit most from parallelization, we profiled our
sequential implementation of the algorithm (pseudocode in
Figure 1). For our profiling, we ran our program with
parameters that mimicked those defined by Tompa in the
motivating computational problem in Section 1.1 of his
paper: 4000 input sequences, each 20 nucleotides long,
searching for 5-mer motifs [2].

The profiling revealed that the 64% of CPU time was spent
in the routine that checks to see if an input sequence contains
(or “matches”) an occurrence of a k-mer (line 5). There
were 4,096,000 calls to that matching function — more calls
than were made to any other function. This number, while

1 f o r kmer in k m e r _ s e t :
2 p_s = . . .
3 N_s = 0
4 f o r s e q u e n c e in i n p u t _ s e q u e n c e s :
5 i f kmer occurs in s e q u e n c e :
6 N_s += 1
7 M[kmer] = c a l c _ z _ s c o r e (N_s , p_s)
8
9 re turn t op_kmers (M)

Fig. 1: Pseudocode for serial calculation of the z-scores

surprising, can be understood by realizing that for each k-
mer, we check for matches against all sequences:

45 k-mers × 4000 sequences = 4, 096, 000 checks. (2)

Even though checking for a match is fast, by virtue of there
being so many checks, counting Ns takes more time than any
other step in the algorithm. The functions that calculate ps
(line 7), for example, are only called once per k-mer (45 =
1024 many times in this case) regardless of the number of
input sequences.

The simplest way to break up the work of calculating
Ns is to split the work up at the level of calculating Ms,
since Ms is dependent on both Ns and ps. Said differently,
parallelizing the outer loop (line 1) of the algorithm will
yield the easiest and most immediate gain. Only 0.3% of
the program’s execution time was spent outside of the loop.

2.3 Method of parallelization
Since the calculations in the step that we identified could

be easily partitioned into separate (and independent) jobs
that do not need communication, the task is well suited
to run on a distributed computer like a Beowulf cluster
with MPI. We assembled our own Beowulf cluster, called
BeoPup, composed of 18 single-core AMD 64-bit Athlon
processor nodes connected by a TCP/IP Ethernet switch.
For parallelizing the motif finding algorithm on our BeoPup
cluster, MPI was a natural choice because it is designed to
enable parallel computing for interconnected machines that
do not share memory, like our cluster. The Beowulf design
of our cluster was well suited for the low communication
requirements of our parallelization of Tompa’s algorithm.
To use MPI with our Python implementation, we settled on
the mpi4py module [3] because of its active development.

To split the work of calculating the z-scores among
multiple computers, we wrote a SPMD (single program,
multiple data) type program that would calculate the z-
scores for disjoint subsets of all of the k-mers, where the
subset is dependent on which node in the cluster the program
is running on. In MPI terminology, we used a “gather” at
the end of the computations so that the z-scores each node
calculated are sent to a master node (given rank zero in our

example) that sorts and outputs the best scoring k-mers. The
source code for this parallel implementation has been made
available online [4].

3. Results
We ran our program with the same parameters given

earlier on 1, 2, 4, 8, and 16 nodes. We recorded the shortest
of five run-times for each condition in Table 1. Running
the program on 16 nodes, for example, yielded a nearly 15
times speedup over the time it takes to run the program
on just a single node. The efficiency for this 16 node case
is given by the speedup divided by the number of nodes:
14.996

16 = 0.937. An efficiency of 1 would indicate a perfectly
linear speedup, where the parallelized run-time is equal to
the single-node run-time divided by the number of available
nodes. The slightly decreasing efficiency can be explained
by communication overheads and the redundant computation
of the background nucleotide Markov model (used in finding
ps) that occurs on all nodes. A near perfectly linearly
speedup of our algorithm holds until the number of available
processors nears the granularity of the parallelization, which
is given by the number of k-mers.

Table 1: The run-time of our parallelization of Tompa’s
algorithm descreases almost linearly with respect to the
number of compute nodes.

Nodes Speedup Efficiency Time (seconds)

1 1.000 1.000 37.227
2 1.971 0.985 16.873
4 3.894 0.974 8.539
8 7.706 0.963 4.315

16 14.996 0.937 2.217

Figure 3 shows run-time increasing exponentially when
we increase the length of the motifs that we are searching
for. Because of the design of our parallelization, increasing
the problem size in this way will only increase the efficiency
when running on many nodes. This is because the proportion
of time spent calculating z-scores over the time spent in non-
parallel code increases as k increases.

4. Discussion and Future Work
We have shown that the application of parallel techniques

can greatly increase the speed of Tompa’s motif-finding
algorithm. Others have demonstrated success parallelizing
widely-used motif finding algorithms; MEME is one such
example that uses clusters of GPUs [5]. It reasons that other
motif-finding algorithms could benefit from the application
of parallel computing techniques and that the resultant
speedup could make running precise (but expensive) algo-
rithms a more practical prospect.

After the completion of the parallelization of Tompa’s
algorithm, we reached out to members of the bioinformatics
community. So far, the improvements were met with a

1
2 f o r kmer in k m e r _ s e t :
3 p_s = . . .
4 N_s = 0
5 f o r s e q u e n c e in i n p u t _ s e q u e n c e s :
6 i f kmer occurs in s e q u e n c e :
7 N_s += 1
8 M[kmer] = c a l c _ z _ s c o r e (N_s , p_s)
9

10
11
12
13 re turn t op_kmers (M)

Serial version

k m e r _ s e t = g e t _ k m e r s _ f o r _ r a n k (my_rank)
f o r kmer in k m e r _ s e t :

p_s = . . .
N_s = 0
f o r s e q u e n c e in i n p u t _ s e q u e n c e s :

i f kmer occurs in s e q u e n c e :
N_s += 1

M[kmer] = c a l c _ z _ s c o r e (N_s , p_s)

M = g a t h e r _ t o _ r a n k _ 0 (M)

i f my_rank i s 0 :
re turn t op_kmers (M)

Parallel version
Fig. 2: Pseudocode of parallelization

Fig. 3: Increases in k-mer length exponentially increase run-
time.

variety of feedback as well as some constructive criticism to
help form a plan for the future of our work with Tompa’s
algorithm. An insightful comment was provided by Dr.
Jonathan Visick, a professor of Microbiology and Genetics
at North Central College,

With hundreds of new bacterial whole-genome se-
quences being completed each year, problems like
identifying ribosome-binding sites are not going
away: the sequences are not the same for different
species, necessarily. Plus, an algorithm for finding
a ribosome-binding site presumably would also
be applicable to finding promoters in prokaryotes,
transcription-factor binding sites in eukaryotes and
various other sequence features. [6]

The next step for this algorithm probably entails a more col-

laborative effort from within the bioinformatics community.
The feedback indicates that the importance of motif-finding
is not dwindling and that their utility is greater now than
ever before. Since Tompa’s algorithm does not make any
biological assumptions, it can be adapted to address some
of the challenges mentioned by Dr. Visick.

Tompa’s algorithm involves creating a distinct determin-
istic finite automaton (DFA) for each k-mer. This DFA is
used to match sequences that have an occurrence (recall
that an occurrence allows substitutions) of the related k-
mer, and also to calculate ps. As a possible extension to his
work, Tompa suggests finding a way to accommodate longer
k-mers and more substitutions. This is because the DFA
creation algorithm that we implemented, while computation-
ally fast for simple cases that allow only one substitution,
becomes slow enough when it is modified to allow for more
substitutions that the program’s total run-time is markedly
increased (Figure 4).

Profiling our code showed that DFA creation (instead of
matching) takes up the majority of the run-time when we
allow for three substitutions. Although Tompa suggests core
modifications to his algorithm to allow for more substitu-
tions, simply adding more compute nodes to decrease the
number of k-mers that each node must inspect might be seen
as a possible solution to the problem. For example, the many-
thousand cored super computers ranked in the TOP500 list
could easily tackle a problem with limited substitutions [7].

5. Conclusions
Motif finding is a computationally expensive task. This

paper presented a parallel version of Tompa’s exact method
for finding short motifs [2]. Using a Beowulf cluster, we
showed that our parallel version of the algorithm was able
to significantly speed up the search for motifs. For example,
when searching for a motif using 16 nodes, we achieved

Fig. 4: For large k-mers, increasing the number of allowed
substitutions significantly increase run-time.

a speedup of almost 15 times. Parallel motif-finding algo-
rithms can enable searching for more complex motifs in
reasonable amounts of time.

6. Acknowledgements
We would like to thank Dr. Jonathan Visick, Dr. Deborah

Lycan and Dr. Adam A. Smith for discussions about biol-
ogy and bioinformatics. This material is based upon work
supported by the John S. Rogers Science Research Program
at Lewis & Clark College and by the James F. and Marion
L. Miller Foundation.

References
[1] M. Das and H.-K. Dai, “A survey of dna motif finding algorithms,”

BMC Bioinformatics, vol. 8, no. Suppl 7, p. S21, 2007. [Online].
Available: http://www.biomedcentral.com/1471-2105/8/S7/S21

[2] M. Tompa, “An exact method for finding short motifs in sequences,
with application to the ribosome binding site problem,” in Intelligent
Systems in Molecular Biology, 1999, pp. 262–271.

[3] “MPI for Python,” http://mpi4py.scipy.org/.
[4] “Code : motif-finder,” https://code.launchpad.net/motif-finder, 2011.
[5] Y. Liu, B. Schmidt, and D. L. Maskell, “An ultrafast scalable many-

core motif discovery algorithm for multiple gpus,” in 2011 IEEE
International Parallel & Distributed Processing Symposium.

[6] J. Visick, personal communication, 2011.
[7] “TOP500 List - November 2010,” http://top500.org/list/2010/11/100,

2010.

