
Learning CUDA: Lab Exercises and Experiences, Part 2

Christopher T. Mitchell Jens Mache

Lewis & Clark College
Portland, OR 97219, USA

{chrism, jmache}@lclark.edu

Karen L. Karavanic

Portland State University
Portland, OR 97207-0751, USA

karavan@cs.pdx.edu

Abstract
The rise of multi-core computer hardware has introduced
new urgency to learning parallel programming. In this pre-
sentation, we again focus on CUDA exercises suitable for
undergraduate students. Trying to appeal to a wide audience
of today’s learners, we have developed a “Game of Life”
exercise and an introductory CUDA summary. We discuss
our classroom-test of the exercise, our experiences, and our
lessons learned.

Categories and Subject Descriptors D.1.3 [Software]:
Programming Technique—Concurrent Programming; K.3.2
[Computer and Information Science Education]: Computer
Science

General Terms Algorithms, Design, Human Factors, Lan-
guages, Measurement, Performance

Keywords parallel computing, GPGPU, CUDA, computer
science education

1. Introduction
The rise of multi-core computer hardware has introduced
new urgency to learning parallel programming, and CUDA
is a well-known approach to general-purpose computing
on graphics processing units (GPGPU). Although a typi-
cal CPU today has two, four or six cores, today’s graphics
cards can already have hundreds of cores.

Existing learning materials for parallel programming fo-
cus on scientific computing. Many of the applications pre-
sented in current textbooks include: matrix operations, nu-
merical integration, finite element computations, and FFTs.

This focused set of applications is insufficient for two rea-
sons: it is not representative of the broad range of applica-
tions that must soon be implemented in parallel, and the im-

Copyright is held by the author/owner(s).

SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

portance of these applications is only clear to students with
a background in scientific computing.

Thus, there is a need for more widely-accessible exam-
ples that demonstrate the diverse applicability of parallel
programming and motivate a broader group of students. To
help accomplish this, we began developing a “Game of Life”
exercise and a website that would help students quickly be-
come familiar with important CUDA concepts.

2. Pieces of the Puzzle
While learning CUDA, we identified essential concepts nec-
essary for understanding how CUDA applications are de-
signed. We wanted to impress these concepts on students
so that they would have a cohesive (though not necessarily
detailed) mental model of how a CUDA application works.
The hope is that from this model, students will be better able
to internalize the details learned from other, more detailed,
sources. We produced an informational web-page and a re-
lated lab exercise to teach and affirm these concepts [2].

The first concept involves understanding the differences
between a CPU and a GPU — the differences in processor
design encourage radically different ways of composing a
program to solve a problem. Understanding the architecture
of a GPU can help illuminate the rationale behind some of
the ideas found in CUDA. The other pieces that we discuss
in our webpage are:

• running a kernel on the GPU

• executing many copies of the kernel in configurable
grids.

• the idea of being able to execute many distinct iterations
of certain loops simultaneously by using blockIdx and
threadIdx.

• allocating and copying to and from device memory

Each of these concepts are relevant to all but the most
trivial CUDA programs, and having a grasp on them should
make understanding CUDA source code and other materials
much easier.



2.1 Game of Life Exercise

The undergraduate students who helped write part one of this
series [3] worked through four labs associated with the book
“Programming Massively Parallel Processors: A Hands-on
Approach” [5]. The students reported that many of the labs
rewarded student effort only with simple pass/ fail messages
and that these textual messages were not very engaging or
motivating. Students wished that their efforts could be met
with a more rewarding outcome such as a visual. For a
more engaging and visual lab, we explored the idea of using
Conway’s Game of Life.

We realized that instructing students to port a CPU-only
version of the Game of Life to CUDA would serve well to
reinforce the essential concepts that we identified. We set-
tled on a prompt that offered no guidance and only explained
that the student should get practice “putting all of the CUDA
pieces together” by converting a serial Game of Life imple-
mentation into a CUDA one. This would require students
synthesize what they have learned from other resources.

Our first attempt at developing the CPU-only code and
the CUDA-enabled solution used the console for output. Be-
cause both versions were being bottlenecked by the slow
console output, discerning a speed difference between the
two was impossible. We took issue with this because with-
out a perceptible speed difference, students would not get
feedback demonstrating that their CUDA port had any bene-
fit over the CPU-only version. To rectify this, we augmented
the program with Xlib to draw the board in a window with
one pixel per cell. With 1000× 1000 sized boards, the speed
increase that CUDA enables is easily observable, even on
machines with fast CPUs.

3. Evaluation
We evaluated the Game of Life exercise with students en-
rolled in a 2011 summer Special Topics course at Portland
State University titled “General Purpose GPU Computing”
(GPGPUC). The course was open to senior undergraduates
and graduate students, and covered both GPU hardware and
CUDA. Because the exercise was added after the course
was designed and already underway, we added it as an extra
credit exercise, with the credit contingent upon the students’
completion of a short survey. Student preparation prior to
completing the exercise included readings from the CUDA
C Programming Guide [1], the first three articles in the Dr.
Dobbs series [4], and several recent research papers. They
had completed two short programming assignments: the first
one was designed to familiarize them with the CUDA envi-
ronment and course machines; the second one required them
to implement a simple matrix-vector multiplication in C,
Pthreads, OpenMP, and CUDA. They were partway through
more complex group programming projects using CUDA at
the time they completed the extra credit exercise. Ultimately,
eight students provided feedback.

Several respondents mentioned difficulty using tiling (de-
scribed in Chapter 4 of [5]) to accommodate a Game of Life
board with more cells than the maximal number of threads
that can be in a single block. This was not an intended stick-
ing point of the exercise and suggests that tiling (especially
given it’s general utility and ubiquity) should be introduced
by our summary website.

We had anticipated that the exercise would take one or
two hours to complete. The seven students who answered the
question “Approximately, how many hours did you spend on
the exercise?” answered with 1, 2, 3, 4, 4, 5, and 5 hours. A
few students reported that the bulk of their time was spent on
things related to tiling. Other students wished that they were
able to use the CUDA debugger, but their environment did
not readily support using it.

Students found the exercise to be interesting (4 vs. 0),
worthwhile (6 vs. 0) and helpful for understanding course
materials (5 vs. 1). Some felt that the Game of Life was a
compelling problem for parallel computing (3 vs. 1). Four of
the eight students thought that the exercise was slightly dif-
ficult while three found it to be slightly easy. Two students
found our summary website to be sufficient for helping them
understand the exercise, and three found our website insuffi-
cient; the rest felt neutral, indicating room for improvement.

Acknowledgments
We would like to thank David Bunde for discussions, and
Julian Dale for his role in creating the exercise and web-
site. This material is based upon work supported by the Na-
tional Science Foundation under grant 1044932, by the John
S. Rogers Science Research Program at Lewis & Clark Col-
lege, by NSF award 1044973, and by a PSU Miller Founda-
tion Sustainability Grant.

References
[1] NVIDIA CUDA C programming guide. http://developer.

download.nvidia.com/compute/DevZone/docs/html/

C/doc/CUDA C Programming Guide.pdf.

[2] http://www.lclark.edu/∼jmache/CUDA/.

[3] N. Anderson, J. Mache, and W. Watson. Learning CUDA: Lab
exercises and experiences. SPLASH ’10, pages 183–188, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0240-1. doi:
http://doi.acm.org/10.1145/1869542.1869571.

[4] R. Farber. CUDA, supercomputing for the
masses: Part 1. http://www.drdobbs.com/

high-performance-computing/207200659, 2008.

[5] D. B. Kirk and W.-m. W. Hwu. Programming massively paral-
lel processors: a hands-on approach. Morgan Kaufmann Pub-
lishers, Burlington, MA, 2010. ISBN 0123814723.


